各位老铁们,大家好,今天由我来为大家分享构建服务器,以及如何搭建服务器的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!
一、如何搭建企业网络存储服务器
1.选择机架设备
小型企业通过在桌面或架子上堆叠服务器硬件和网络设备来开始运营并不罕见。这样做的成本的确比较低廉,但会存在未来隐患,随着公司业务的发展,这些设备可能会成为一个巨大的混乱。这些设备暴露在外会增加物理篡改的风险,也会埋下一些定时*,比如说不小心造成的咖啡溢出,环境灰尘以及员工不小心被暴露的电线绊倒所存在的危险等等。
但是,使用机架式设备能避免这类事故。为什么这样说呢?因为这些机架经过专业设计,可以轻松地容纳这种类型的硬件。虽然,与非机架安装等价物相比,它们似乎非常昂贵,但从长远的角度来说,*价比高,你可以使用它们轻松管理你的设备以及其它好处会远远超过其成本。
2.要了解服务器机架的基本特征
在购买或安装服务器机架之前,你需要学习并了解服务器机架的基本特征。服务器机架通常以机架单位来衡量,通常表示为“U”或“RU”。机架单元的高度相当于1.75英寸(44.5毫米),兼容设备的测量单位为“U”的倍数。通常,服务器的范围从1U到4U,网络*机在1U到2U之间,而一些刀片服务器在5U到10U之间或甚至更多。
在确定服务器机架之前,你还需要考虑服务器机架的宽度和高度(深度)。通常可接受的宽度为19英寸,深度为600-1,000mm。然而,这些机架中的许多通常具有可调节的后支架,即使大多数机架安装服务器通常包括可调节的安装套件,一旦它们具有足够的深度来容纳服务器就可以使用。
四柱机架是当今市场上最受欢迎的商用服务器机架之一,它设计用于容纳19英寸宽的设备和服务器。
普通机架的高度约为42U,其中一半的机架高度为24U,但有几种其他类型的机架,机架高度从5U到20U不等。这些不是对这些机架外部尺寸的测量,因为该特征高度依赖于机架的设计并且它是变化的。一些机架配有脚轮,有助于缓解运动。
开放式机架和小型壁挂式机柜是在空间有限的地方安装IT服务器的绝佳选择。但是,你需要意识到,如果你决定使用开放式机架,则必须满足特殊要求才能安装服务器,包括将机架固定在地板上。壁挂式机柜不适用于由少数服务器组成或比网络*机重的任何负载。
3.隔离服务器以降低噪音
如果你没有专门放置和存放设备的单独房间,你将不得不考虑内部服务器设备附带的噪音。你需要一个分区的房间,即使它是一个小区域,因为从长远来看,它是值得的。
建立分区以后,能够消除或者减弱那些会影响员工整体工作效率的隐患。另外还有一个好处就是能够防止任何未经授权的人员篡改你的设备,有助于保护设备免受损坏并防止被盗。
在小型企业中,除了将机架放在房间的角落或IT部门内部别无选择外,强烈建议使用具有隔音功能的机架。由于通风口无法实现完全隔音,因此这些机架通常通过其降噪特*来衡量。它们产生的噪音和机架本身的整体降噪能力的结合通常会决定它们的工作效果。
4.想要散发热量则需一个合适的空调机组
IT设备和服务器产生的热量通常很高,可能会缩短设备的使用寿命。它们还可能导致中断和崩溃,这可能很难解释,这就是为什么在构建内部服务器机房时安装冷却装置非常关键的原因。
但是,如果你只需要几个网络*机,五托架网络连接存储(NAS)系统或服务器,你可能不需要担心冷却系统,除非你需要更大的NAS,多个服务器和一个中型UPS,这样的话热量会迅速增加。
服务器机架的热容量也受外部温度的影响。这就是强烈建议你在服务器机房安装空调装置的原因。
只要打开服务器并产生热量,这些空调就必须始终打开。建议使用不同的断路器安装独立的独立装置,以便在需要维修任何一个断路器时可以定期更换它们。
不要想着打开窗户再加上两部风扇来散发热量。
5.学会正确处理电缆
只有正确的电缆管理才能确保适当的通风。这就是为什么尝试将42个1U服务器强制进入全高机架是一个非常糟糕的主意,因为它会导致严重的布线限制或限制。许多旧服务器的机箱通常需要彼此之间1U到2U的空间,以确保正确的气流。目前,大多数现代机架式服务器都不需要这些空间。
设置一个装满机架的服务器机房需要的不仅仅是使用一些螺丝来帮助将这些设备固定到位。你需要了解如何管理从这些机架中排列的所有设备及其相应的以太网电缆中出来的电缆。除了机柜内布线外,还需要妥善管理或终止用于IP摄像机,台式计算机和所有其他网络设备的以太网LAN点的电缆。
处理所有这些的最佳方法是使用RJ45配线架终止以太网电缆。安装在1U空间中的普通接线板通常提供多达24个端口,并且通常需要某种形式的手动输入,例如剥离电缆,将其固定到接线板中以及使用线缆测试工具来验证其连接*。根据你的预算,你可以让网络专业人士或专家在一天内为你处理所有这些问题。
除了配线架之外,你还需要使用束线带,因为当你尝试固定杂散电缆时它们会派上用场。你可以获得可以重复使用的标准电缆扎带,当你批量购买时它们非常便宜。
6.学会标记,保持简单
在设置服务器时,要学会标记和记录你所使用的流程,这点是非常重要的。这样做,便于任*员工或者供应商在需要了解服务器机房时,能够高效并系统的了解到服务器的整体系统情况。并且还可以防止可能发生的任何灾难*错误,包括重新启动或拔出系统而不发出任何形式的警告。
正确标记基础设施的最简单和最好的方法之一是使用标签打印机。该打印机可以从任何硬件商店购买。你必须使用正确描述它们的唯一名称或其IP来标记网络和服务器设备。你还应该为键盘,鼠标和视频开关,路由器,NAS设备,冗余硬件和数据备份设备等其他IT设备执行相同的操作。
这些注意事项应打印出来并妥善详细,以便轻松解释与你的内部硬件相关的重要程序。这些打印件应贴在冰箱磁铁或服务器机柜上。为了获得最佳结果,它们应包括与数据备份,联网,启动或关闭这些设备相关的操作说明,以防断电。
除了以上几点,还有一些需要你去了解和注意的地方:
a.空间要求
b.地板和柜子类型
c.设备尺寸
d.加热和冷却系统
e.电气设置
f.防火
g.紧急电气备份
h.安全和警报
最重要的一点是,以上所有内容都要花钱,所以要规划好你的预算,不要让设置服务器机房花掉了你整个IT预算。
二、如何搭建服务器
首先打开控制面板,选择“程序”,双击“打开或关闭Windows服务”,在弹出的窗口中选择“Inter信息服务”下面所有地选项,确定,开始更新服务。打开浏览器,输入“localhost”回车,如果出现IIS7欢迎界面,说明启动成功。
服务器能够响应终端的服务请求,并进行处理。我们在上网的时候是不可能将网络接入互联网的,我们都需要通过服务器来连接网络,只有服务器响应你的联网请求,并且进行处理以后才可以联网;存储的功能,服务器的存储空间一般比较充足,可以存储非常多的信息。
服务器部署注意事项
在许多服务器机架,电源分配单元(PDU)的部署仅仅只提供了数量有限的输出口,所以一台已经被大量使用的机架可能没有足够的开放式PDU插座以容纳更多额外的服务器,或无法很方便的为服务器电源线安排可用的插座。
用户可能会需要重新安排一些线缆,而只能通过拔掉服务器的电源了,而这会造成系统的停机,故而这就需要运营团队进行提前安排了。
三、如何构建一个基于ty的后端服务器
如何构建一个基于ty的后端服务器,先打个标题
上干货,这个是前奏,比较山寨的实现,大家可先自行看下
下面将分析手头上一个项目,运用的技术很全,值得学习,先做一个简单介绍,当然业务部分代码就不讲了。
整个工程采用m*en来管理,主要的技术是spring+jedis+ty+disruptor.看这个组合,这个服务器端*能应该很不错。
这个工程又引发我对技术无限热爱
,哈哈。
这个工程,目前主要是针对一些基于json/xml/text格式的请求,同时也是支持标准手机请求的,当然,可以自定义一些其他格式或者pc端的请求,而且针对不同URI,后面挂了不同的handler,这些可能都是一些web处理的基本思想,只是脱离了常规的web容器或者应用服务器。
xml工具采用xstram来处理,两个字,方便。
json工具采用jackson\不知道和业界出名的fastjson\gson\sf.json有何区别,待鉴定。
客户端的请求,统一继承ClientRequestModel,经过编码统一转化为domainMessage,交由disruptor来处理,其实oop里什么继承,实现,封装思想,大部分都在围绕一个东西在走,一句话,把看似各有棱角的东西如何转化为共同的东西,求同存异啊(比如,水,石头,空气等,如果在这一层,我们没法统一用一个特征来表示,我们可以先把它转化为*,那是不是可以用同一个东西来表示呢?如何高度抽象封装,这真是一门艺术)。
看这个工程对客户端请求,是如何一步步处理的,message->request->event
交由disruptor来处理,很美妙的思想。在了解这些之前,我们有必要深入学习一下disruptor,很特别的一个框架,宣言很牛逼,
了解disruptor之前,先学习下ringbuffer是如何实现的?
1、ringbuffer的特别之处:
只有一个指针,没有尾指针,基于数组,且不会删除元素,元素会覆盖,充分利用缓存行,减少垃圾回收。
2、如何从ringbuffer读取数据:
------------------------------------------2013-9-9
补充-----------------------------------------------------
下面主要讲一下请求如何处理这块架构吧,其实架构这个东西,说简单一点,就是一种简单可扩展的实现方式,在某些程度上,不要太在意*能。
底层通信建立在ty之上,基本没做任何改动
J*a代码
public class HttpServerPipelineFactory implements ChannelPipelineFactory{
private ChannelUpstreamHandler channelUpstreamHandler;
public ChannelPipeline getPipeline() throws Exception{
// Create a default pipeline implementation.
ChannelPipeline pipeline= pipeline();
// Unment the following line if you want HTTPS
//SSLEngine engine= SecureChatSslContextFactory.getServerContext().createSSLEngine();
//engine.setUseClientMode(false);
//pipeline.addLast("ssl", new SslHandler(engine));
pipeline.addLast("decoder", new HttpRequestDecoder());
// Unment the following line if you don't want to handle HttpChunks.
pipeline.addLast("aggregator", new HttpChunkAggregator(1048576));
pipeline.addLast("encoder", new HttpResponseEncoder());
// Remove the following line if you don't want automatic content pression.
pipeline.addLast("deflater", new HttpContentCompressor());
//pipeline.addLast("handler", new HttpRequestHandler());
pipeline.addLast("handler", channelUpstreamHandler);
return pipeline;
}
public void setChannelUpstreamHandler(ChannelUpstreamHandler channelUpstreamHandler){
this.channelUpstreamHandler= channelUpstreamHandler;
}
}
public class HttpServerPipelineFactory implements ChannelPipelineFactory{
private ChannelUpstreamHandler channelUpstreamHandler;
public ChannelPipeline getPipeline() throws Exception{
// Create a default pipeline implementation.
ChannelPipeline pipeline= pipeline();
// Unment the following line if you want HTTPS
//SSLEngine engine= SecureChatSslContextFactory.getServerContext().createSSLEngine();
//engine.setUseClientMode(false);
//pipeline.addLast("ssl", new SslHandler(engine));
pipeline.addLast("decoder", new HttpRequestDecoder());
// Unment the following line if you don't want to handle HttpChunks.
pipeline.addLast("aggregator", new HttpChunkAggregator(1048576));
pipeline.addLast("encoder", new HttpResponseEncoder());
// Remove the following line if you don't want automatic content pression.
pipeline.addLast("deflater", new HttpContentCompressor());
//pipeline.addLast("handler", new HttpRequestHandler());
pipeline.addLast("handler", channelUpstreamHandler);
return pipeline;
}
public void setChannelUpstreamHandler(ChannelUpstreamHandler channelUpstreamHandler){
this.channelUpstreamHandler= channelUpstreamHandler;
}
}
相关spring配置
J*a代码
<bean id="ServerPipelineFactory" class=".yunchao.cm.work..HttpServerPipelineFactory">
<property name="channelUpstreamHandler" ref="RequestHandler"/>
</bean>
<bean id="ServerPipelineFactory" class=".yunchao.cm.work..HttpServerPipelineFactory">
<property name="channelUpstreamHandler" ref="RequestHandler"/>
</bean>
J*a代码
<bean id="RequestHandler" class=".yunchao.cm.work..HttpRequestHandler">
<property name="urlMaps">
<map>
<entry key="/payorder">
<ref bean="payOrderCodecFactory"/>
</entry>
<entry key="/question">
<ref bean="questionCodecFactory"/>
</entry>
<entry key="/sms">
<ref bean="smsCodecFactory"/>
</entry>
<bean id="RequestHandler" class=".yunchao.cm.work..HttpRequestHandler">
<property name="urlMaps">
<map>
<entry key="/payorder">
<ref bean="payOrderCodecFactory"/>
</entry>
<entry key="/question">
<ref bean="questionCodecFactory"/>
</entry>
<entry key="/sms">
<ref bean="smsCodecFactory"/>
</entry>
代码太多,不全部贴出来,后面整理一下放到我的github上去。
基如此,我们还是得定义一个handler,继承simpleChannelUpstreamHander,并重写了messageReceied方法,具体在这里。
J*a代码
QueryStringDecoder queryStringDecoder= new QueryStringDecoder(request.getUri());
String url= queryStringDecoder.getPath();
CodecFactory codecFactory= urlMaps.get(url);
if(null== codecFactory){
logger.error("unsupported url:{} request.", url);
//sendError(ctx, BAD_REQUEST);
e.getChannel().close();
return;
}
//获取cmwap网络中的手机号码
String phone= PhoneUtils.getPhone(request.getHeader("x-up-calling-line-id"));
if(request.getMethod().equals(HttpMethod.POST)){
ChannelBuffer content= request.getContent();
String postParams= content.toString(CharsetUtil.UTF_8);
logger.debug("request content:{}", postParams);
ClientRequestModel model=(ClientRequestModel) codecFactory.decode(postParams);
model.setProperty(model.MESSAGE_EVENT_KEY, e);
model.setProperty(model.HTTP_REQUEST_KEY, request);
model.setProperty(model.HTTP_PHONE_KEY, phone);
ISocketAddress remoteAddress=(ISocketAddress) e.getRemoteAddress();
model.setProperty(model.IP_KEY, remoteAddress.getAddress().getHostAddress());
logger.info("user request model:{}", model);
model.fireSelf();
QueryStringDecoder queryStringDecoder= new QueryStringDecoder(request.getUri());
String url= queryStringDecoder.getPath();
CodecFactory codecFactory= urlMaps.get(url);
if(null== codecFactory){
logger.error("unsupported url:{} request.", url);
//sendError(ctx, BAD_REQUEST);
e.getChannel().close();
return;
}
//获取cmwap网络中的手机号码
String phone= PhoneUtils.getPhone(request.getHeader("x-up-calling-line-id"));
if(request.getMethod().equals(HttpMethod.POST)){
ChannelBuffer content= request.getContent();
String postParams= content.toString(CharsetUtil.UTF_8);
logger.debug("request content:{}", postParams);
ClientRequestModel model=(ClientRequestModel) codecFactory.decode(postParams);
model.setProperty(model.MESSAGE_EVENT_KEY, e);
model.setProperty(model.HTTP_REQUEST_KEY, request);
model.setProperty(model.HTTP_PHONE_KEY, phone);
ISocketAddress remoteAddress=(ISocketAddress) e.getRemoteAddress();
model.setProperty(model.IP_KEY, remoteAddress.getAddress().getHostAddress());
logger.info("user request model:{}", model);
model.fireSelf();
J*a代码
@Override
public DomainMessage fireSelf(){
DomainMessage em= new DomainMessage(this);
EventUtils.fireEvent(em,"alipayNotifyState");
return em;
}
@Override
public DomainMessage fireSelf(){
DomainMessage em= new DomainMessage(this);
EventUtils.fireEvent(em,"alipayNotifyState");
return em;
}
看到这里基本上能够清楚了,是如何把客户端请求包装成ClientRequestModel了,且后面涉及到处理的对象,全部继承它,在整个架构之中,has a优于
is
a,对于客户端ty的一些对象,也是存储在ClientRequestModel中,codec无非也是采用了xml/json/kv,如斯,实现了字节与对象之间的转换。
除此之外,突然想到刚来杭州工作的第一家公司,基于此,采用的架构师servlet充当服务器,因为这是一个公司内部的server,而不是一个平台,采用的数据格式也比较单一,就是xml,但是采用的外部类库也是xstream来处理的,但是整个系统维持的日调用量也是在百万级别,运用的client则是采用client,对于不同请求后面挂的handler,是在容器启动时加载到内存中,其余也没有什么亮点了。
转载,仅供参考,祝你愉快,满意请采纳。