大家好,今天来为大家分享ai服务器市场规模的一些知识点,和浪潮信息在中国AI服务器市场的所占份额如何的问题解析,大家要是都明白,那么可以忽略,如果不太清楚的话可以看看本篇文章,相信很大概率可以解决您的问题,接下来我们就一起来看看吧!
一、浪潮信息在中国AI服务器市场的所占份额如何
浪潮信息一直都是国内首屈一指的智能服务器领先企业,不仅占领着技术制高点,还在技术的应用落地上表现的十分好,充分地将自己的技术优势反映到了市场上。据IDC发布最新一期《2020H1中国AI加速计算报告》报告显示,2020年上半年浪潮AI服务器销售额达6.88亿美元,市场份额占比达到53.5%,同比2019上半年提升3.3个百分点,这也是AI服务器第四年取得超50%的市场份额,数据就是对其市场份额最有说服力的背书。
二、人工智能带动了GPU服务器市场爆发式的增长!
【资讯】咨询机构IDC近日发布的《2017年中国AI基础设施市场跟踪报告》显示,2017年,中国GPU服务器市场迎来爆发式增长,市场规模为5.65亿美元(约合35亿元人民币),同比增长230.7%,约占中国X86服务器市场的6%。
该机构预测,未来五年GPU服务器市场仍将保持高速增长,2017~2022年复合增长率将超过43%。到2022年,GPU服务器的市场规模有望达到中国X86服务器市场整体规模的16%,将改变整个服务器市场的格局。
从厂商市场占有率来看,浪潮处于领先位置,曙光和新华三紧随其后。从行业分布来看,互联网是GPU服务器的主要用户群体,提供AIaaS的公有云服务提供商和AI解决方案提供商有望成为未来驱动市场增长的新动力。从市场趋势来看,2017年GPU服务器市场不再是一个小众的市场,几乎所有互联网用户和大量的AI初创公司都开始采购GPU服务器搭建自己的AI平台,主流的公有云厂商也都先后推出自己的AIaaS服务。
从AI生态系统建设来看,Nvidia具有明显优势,其Tesla系列产品在AI基础设施市场占据主导地位,尤其在线下训练场景中几乎*了市场。从其产品分布来看,P40和P100占据超过70%的市场份额,分别面向推理和训练工作负载,P4在2017年也取得了快速增长,主要面向1U紧凑型推理计算平台。
该机构中国服务器市场高级研究经理刘旭涛认为:“2017年是中国AI元年,也是AI生态和市场迅速发展的一年。在国家政策和资本的共同推动下,大量AI初创企业涌现、行业应用迅速落地。AI市场的火热推动了以GPU服务器为主的AI基础设施市场取得了爆发式增长,未来伴随AI市场的发展和繁荣,AI基础设施市场仍将保持快速增长。”他认为,目前,AI的应用以线下训练为主,使用者主要是拥有海量数据的用户群体,基础设施以GPU为主。未来,在线推理的应用将更加广泛,除了GPU,FPGA、ASIC等加速计算技术,甚至基于ARM架构的一些新的专用AI芯片都会迎来发展机遇。
三、浪潮集团:服务器国内出货量市场占比11.3%,全球第一
2020GIDC全球互联网数据大会在深圳正式召开,会议从“数据经济”的角度出发,针对“新基建”、“边缘计算”、“容器技术”、“AI”、“RPA”等主流的技术趋势进行解读,众多嘉宾及企业分享了其在平台及技术生态搭建方面的见解与思考。
浪潮集团广东公司首席技术官陈逸聪出席大会,并以“突破计算边界,开放成就未来”为题,分享了其对智慧计算、数据中心等方面的看法。
陈逸聪表示,现在无论是互联网服务还是数据服务、数据中心运行等都和计算息息相关,而随着5G、AI、大数据时代的到来,计算的定义不仅仅局限于原有的传统的去中心化计算,而是与智慧挂钩,与此同时新型业务对计算力和数据中心的要求日益提高,那么不局限于原有的定义,突破计算边界、推动形成开放计算生态成为亟需解决的行业核心要点所在。
他强调,智慧计算正源源不断地改变着我们现在和未来的生产生活方式,从日常生活到企业的数字化转型都留下了深刻的影响,简言之,计算力就是生产力。
陈逸聪讲到,传统的数据中心就是部署一个机房或者一个机柜的设备,便能解决计算的需求,而随着互联网业务的发展和数据的扩增,加之2020年初爆发的疫情影响,使原来很多线下的活动转而在线上举行。线上业务的发展意味着数据中心的规模变得越来越庞大和承载的设备越来越多,也意味着对后端的技术支撑和计算力提了新的要求。
此外在今年,国家发改委提出了在全国布局10个左右区域级数据中心集群和智能计算中心的规划,粤港澳大湾区亦规划一个数据中心集群,新型数据中心的建设成为关注的焦点所在。从几年前数据中心的规模扩大到现在超大型数据中心的承载计算设备的数量增多的变化来看,超大规模数据中心的建设一直在快速增长,并且大型数据中心发展带来对应用支撑的复杂度和对数据中心的管理都有所提高。
陈逸聪表示,原来的服务器、存储、网络到计算机操作系统等数据中心建设所需的设备,对于其厂商、设备品牌是谁并不是需要过度关注的问题,而随着大数据越来越聚集、对于云统一的认知愈发引起行业关注与思考。云统一的话能否把各个服务器管起来,目前国内的包括阿里云、腾讯云都在进行,那么对于统一管理的标准如何制定亦有待商榷。
数据中心最大的开销是电力成本,目前全球所有数据中心,一年的总能耗数据显示是3000亿度,转换成发电站的发电来看的话,相当于30座大型核电站的一年发电量。如果在深圳建设一个超大型数据中心集群服务整个粤港澳大湾区,同时配套建设三个核电站做电力支撑并不现实,这必然会对新型超大型数据中心的绿色节能、高效运维有更高要求。
那么如何解决这一难题?陈逸聪举了一个例子,他讲到,原来服务器即物理机、现在已逐步服务的云计算均被业内所接受。云可以即开即用,但是亦有一些*能上的损耗;物理机最快数小时交付,所有的物理机是实时开通,即开即用,隔离*强,稳定*强,但相比云计算能耗也最高。
从另一个角度而言,超高的能耗严重影响数据中心业务的快速发展,中国因为互联网发展迅速,我们的数据中心建设也在世界的前列,一年下来年耗电量是在一千亿度,相当于整个三峡大坝一年的发电量,能耗控制产生了对一些新技术的要求。同时,打破物理边界,实现资源池化亦是数据中心发展追求的方向,以便提高计算资源利用率,实现更高*能和更低TCO以及高效运维。
浪潮通过L11级一体化交付,使交付更快更便捷。在2019年春节前三周完成了突发需求一万台供货保障,从收到需求到交付完毕,仅用时两周。曾经创造了一天8个小时之内物理地上架1万台服务器到数据中心的交付记录,保障了客户实现全球央视春晚观众红包互动的庞大业务需求。此外,浪潮还通过开放计算加速智算中心建设,推动社会智慧转型,目前已布局全线开放计算标准产品线,多年来一直践行开放计算理念并引领开放计算标准,持续定义领先的开放计算产品。
陈逸聪表示,现在浪潮在市场上也得到了认可,前不久国际权威数据机构IDC公布的2020年Q2数据报告中显示:浪潮服务器国内出货量市场占比11.3%,增速80%,全球第一。浪潮 86服务器在中国市场市占率42.6%,排名中国第一。特别在AI领域,浪潮AI服务器中国市场占有率连续三年超过50%。
他强调到,浪潮为业界提供了全栈信息化解决方案,也期待与业内合作伙伴们共同打造一个开放的计算环境,为业内生态的建设创造更美好的未来。
四、AI安防浪潮下,究竟需要怎样强大的一款服务器
眼下,中国共计装有近2亿个视频监控摄像头,而具备AI能力的摄像头仅占其中的1%。
在高清监控摄像头数量与AI渗透率不断递增的情况下,由摄像头采集的图像、视频流数据,需要更强大的分析引擎对其进行分析、处理和训练。
以北京地铁站为例,北京1000多个地铁站中平均每站都有上百个摄像头,平均每个地铁站每天流通8到10万人较为常见。保守预估每个相机每天看见1万个人,再假设对比库中有1万个目标(对于公安数据库来说并不大),这个相机每天要回答的问题就是一亿零一万个!
显然,在当前各类安防项目中,依靠纯嵌入式智能DVR和NVR均无法满足严苛的计算要求。
面对万亿级AI安防市场,在技术落地成花的十字路口,所有的安防企业高管们都会面对一个终极命题:AI安防究竟需要一款怎样强大的服务器?
谈到安防服务器,X86无处不在,一直以来,它都是包括安防在内等多个行业的“宠儿”。
“眼下安防市场很多的管理平台,譬如流媒体服务器、转发服务器、主控服务器基本基于X86架构建设,它的最大优势是比较容易开发、上手比较快,大多工程师更擅长在X86架构上做研发。”
华泰科捷CEO傅剑辉告诉雷锋网,考虑到它表现不俗的*价比,X86服务器一直都是我们采购的首选。
由此,过去多年来,X86服务器也获得了全球顶尖服务器供货商的青睐。
遗憾的是,各科成绩均“达标”的 X86服务器,在如今大热的AI浪潮面前,却遇到了一些“偏科”难题。
傅剑辉透露,从安防用户实际使用角度考量,目前X86服务器应用在安防行业主要存在三大问题:
一、CPU负责逻辑运算的单元并不多,在多任务处理时效率低下。面对海量视频信息,传统X86服务器单纯以CPU为核心的数据中心部署已经不能很好地满足并行灵活计算、多变环境的计算需求,很难在安防企业级服务器市场有惊艳的表现。
“以前的视频数据只需存在后台,做少量分析即可,也就是说存储足够大就行;今天,很多客户都希望我们能够实时处理这些海量视频信息并反馈结果,而这就意味着系统需要同时做解码、做视频结构化、做识别、搜索等等,X86明显就不够用了。”
换句话说,X86可以类比手机里的功能机,它能够满足单一的通信处理需求,而AI融入的安防市场,更需要一台强大的智能手机,配备更强大的*能以适配游戏、图片处理等个*需求。
二、在行业出现算力不够的大背景下,很多厂商打出X86服务器加上若干GPU卡的组合拳,而这种为了单纯解决算力而“拼凑”出的方案大大增加了服务器的功耗和用户成本。
从行业采用情况看,如果涉及人脸识别等AI项目时,大部分厂商会采用GPU作为人像数据结构化的处理单元,特别是在X86服务器集群中,GPU更是成为唯一选择。
在某种程度上,GPU的确解决了部分算力不足的问题,却也存在两个致命硬伤。
一是功耗大,需依托X86架构服务器运行,不适用于更为广泛的AI方案开发;二是成本高昂,比如采用GPU方案,折算单路人脸识别成本在万元以上,相较其他千元级,甚至是百元级的方案,毫无成本优势可言,这两个致命短板,也让很多企业不得不寻求新的方案。
三、由于X86更多采用的是较为开放的LinuX系统,而非封闭的AIX系统,在稳定*和可维护*上略显不足。
“未来的市场必定是数据规模和计算能力的角逐。”
浪潮商用机器有限公司产品部张琪告诉雷锋网,随着越来越多新应用的出现,传统的X86计算架构会遇到很多瓶颈,包括数据瓶颈(处理器的计算单元以多快的速度获取和*数据)、计算瓶颈(单位空间内能集成多少计算能力)、延迟瓶颈、通信瓶颈。
就像设计时速30码的道路难以承载均速100码的车辆通行一样,很短时间内就可造成道路拥堵甚至瘫痪。
今天来看,面对大计算、智能化场景,谁能够最先解决算力问题,又能够更好降低功耗与成本,谁就能在AI浪潮下引领鳌头。
在张琪看来,基于POWER9的高*能服务器能够很好满足AI安防时代下的高智能需求。
从AI安防实际场景所需出发,浪潮商用机器有限公司近期推出了基于POWER9服务器,搭载Ultr*ision视频智能分析系统的AI视觉分析智能分析解决方案(Ultr*ision on Power)。
AI视觉分析解决方案可以看作一个超级高效的AI大脑,它软硬结合,能够实时、准确、智能、节能地完成包括安防在内各个行业所需的复杂*数据处理工作。
“硬”,体现在POWER9架构上,它能够提供强大的图像视频的计算处理能力。相比其他处理器,POWER9支持了PCIe4.0、NVlink2.0等新一代I/O协议,能够在AI等应用中展示出更好的应用表现。
具体来看,相比X86,其单节点视频处理路数提升近3倍,达3.8倍提升深度学习框架AI模型训练效率,1.8倍更好的加速数据库*能,IO能力提升了近5倍。
另外,执行视频和图像编解码,查询搜索任务时,整机可提供单精度56TFlops和双精度28TFlops*算力,和比X86服务器相比,单块GPU即可提供比纯CPU服务器高30倍的推理能力。
值得一提的是,该方案独有的CAPI技术,可以将延迟降低至1/36,全面加速图像处理,同时功耗降低高达30%。
1.8倍、3.8倍、3倍、5倍、30倍,看起来不大的几个数字对于安防行业来说,都是庞大数量级的提升。
这几个数字的变化,能够将各类犯罪和严重的暴力事件的防控手段从事后介入提前到事前或事中,大大减少安全事件的发生,实现公共安全从被动防御到主动防御的业务转变。
除了POWER9提供的*算力硬核外,在软件层面,该方案还有高重Ultr*ision视频智能分析技术加持,如目标检测(PD)、行人重识别(RE-ID)等多项计算机视觉技术,提升目标识别准确率高达94%。
毋庸置疑,软硬结合的AI视觉分析解决方案在实际落地过程中,能够实实在在地为用户解决AI时代下的高算力与低功耗问题。
除此之外,相比其他热门方案,该方案还有两大优势不得不提。
其一、独有的利旧能力降低客户成本。
通常来说,一般的AI视频系统想要实现某些功能必须接入具备AI技术的感知摄像头,该方案在部署过程中不需要更换原有摄像头,只需要旁路接入视频采集端,即可实现AI系统;
另外,该方案还可以兼容不同品牌、不同制式的任何摄像头;可以不改变客户原服务器等硬件架构的情况下部署,有效降低客户部署成本。
其二、就浪潮商用机器公司本身来说,依托其在服务器领域的引领地位,拥有强大的定制化落地能力,缩短交付周期从月到天。
该方案无论是面对大数据处理、机器学习这样的AI应用,还是软件定义存储、内存数据库这一类的开源应用都会有比较好的*能表现。
毫无疑问,专为AI、云计算、大数据等新兴应用而生的AI视觉分析解决方案在客户面对严苛业务挑战时,提供了更多元化的选择。
依托这款高*能产品,用户可以更快地部署各类智能应用,缩短安防AI应用的技术迭代周期。
与此同时,*能卓越的浪潮商用机器服务器的应用不仅限于安防行业,在互联网、金融等对安全*要求高的领域,其也可以施展拳脚。
安防之外,整个社会正在向规模化、自动化、智能化转型升级。其中,智能化的应用方向涵盖四大方向:前端化、云端化、平台化和行业化。
在这个升级过程中,新的平台需要有新的能力做新的认知,新的认知催生新的需求和应用。
对于包括浪潮在内的科技公司来说,这是一次巨大的机会,同时也是一个不小的挑战,路漫漫其修远兮,必须上下而求索。雷锋网雷锋网雷锋网