各位老铁们好,相信很多人对alphago服务器都不是特别的了解,因此呢,今天就来为大家分享下关于alphago服务器以及go的计算能力等同于多少台服务器的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

一、alpha***go的计算能力等同于多少台服务器

找到一篇文章

这么说吧:1997年下赢国际象棋冠军卡斯帕罗夫的“深蓝”是一台超级计算机,而即将和李世石对决围棋的AlphaGo却是谷歌旗下公司DeepMind开发出来的人工智能程序。强行把这二者拉在一起比较……少年我们还是来谈谈世界和平吧。不过AlphaGo作为程序,最终还是要运转在计算机上才能去和人类比个高下的。所以把问题换成“即将和人类下围棋的那台计算机到底比深蓝厉害多少倍?”

我们还是能够简单计算一下给出大致答案的。毕竟在衡量计算机*能方面,我们已经有了一个相当统一的标准:每秒浮点运算次数,为了方便起见,我们下面一律称之为“FLOPS”。

alphago服务器 go的计算能力等同于多少台服务器

千万别被“浮点运算”这个计算机术语吓跑,说人话的话,浮点运算其实就是带小数的四则运算,比如1.2加2.1就是一个典型的浮点运算。如果你的小学数学老师不是美国人的话,那么我们估计这会儿你早就心算出结果是3.3了。不过这对计算机来说,这个问题没那么简单。

我们知道,计算机是以0和1构成的二进制数字进行运算的,比如在基础的二进制里,1就是1,2就变成了10,3是11,4是100……这种运算方式让我们可以用最简单的电路元件组装出稳定有效的计算机器,但它也带来一个问题:计算机能够处理的数字只有整数。如果想不借助任何其他的数学方法,用0和1表示一个0.1……少年我们真的还是来谈谈世界和平吧。

解决这个问题的办法很简单:0.1可以看成是1除以10的结果,我们想让计算机计算一个带小数点的数字,只要告诉CPU这是一个被1后面加了多少个0整除的整数就行了。不过这样一来,计算机在处理小数点的时候,就多了好几个运算步骤。所以进行浮点运算的速度也就成了衡量计算机*能的标准。

拿在国际象棋上击败人类的深蓝来说,它的计算能力是11.38 GFLOPS,意思就是深蓝能在每秒钟里计算113.8亿次带小数的加减乘除。而在二战期间帮助美国设计制造原子弹的第一台通用计算机ENIAC,它的*能只有300 FLOP。

在今天看来,深蓝的*能怎么样?三个字:弱爆了。单就PC中使用的CPU来说,早在2006年,英特尔推出的第一代酷睿2就已经稳稳地超过了深蓝。这还没有算上显卡里GPU带来的效果加成,今天最普通的集成显卡,其*能也已经超过了700 GFLOPS。如果真要在*能上比个高下,深蓝这种上个世纪的超级计算机,就算组团也不一定能单挑你面前的这台笔记本电脑。

那么今天的超级计算机已经达到了什么样的*能水平?我们国家的天河二号是世界最快的超级计算机,它浮点运算能力已经达到了33.86 PFLOPS。也就是说,深蓝要在*能上增长到自身的30万倍,才能和天河二号相提并论。

不过对于深蓝来说,这样的比较实在是太不公平。因为即便在当年,深蓝也不是速度最快的超级计算机。相比之下,只有通过谷歌AlphaGo使用的电脑,我们才能比较出这20年里,我们的计算机到底经过了怎样惊人的发展。

根据谷歌团队发表在《自然》杂志上的论文, AlphaGo最初是在谷歌的一台计算机上“训练”人工智能下围棋的。按照论文里的描述,谷歌利用这台计算机,让AlphaGo的围棋水平提升到了与欧洲冠军樊麾接近的地步。不过论文除了提到这台计算机装有48个CPU和8个GPU之外,对计算机的*能连一个数字都没有提到。好在AlphaGo是在云计算平台上运行的,我们只要找来竞争对手的计算机数据比较,就可以了解到大概了。

比如说去年12月,阿里云对外开放的高*能计算服务。按照阿里云的描述,这些计算机的单机浮点运算能力是11 TFLOPS,而且同样可以用来训练人工智能自行学习。如果谷歌的计算机*能与阿里云接近的话,那么AlphaGo所驱动的硬件,*能至少是深蓝的1000倍。

但故事到这里还没有完,AlphaGo并非只有“单机版”一个版本。为了达到更高的运算能力,谷歌还把AlphaGo接入到了1202个CPU组成的网络之中。联网后的AlphaGo算力猛增24倍,一下子从“单机版”不到职业二段的水平,跳跃到了职业五段上下的水准。

所以AlphaGo比深蓝厉害多少倍?估计这会你已经得出答案了:2.5万倍。从这个角度,我们也能看出来,围棋究竟是怎样复杂的一种智力游戏,以至于计算机的*能需要20年的提高,才能在象棋上战胜人类后,再在围棋棋盘面前,坐到人类顶尖选手的对面。不过归根揭底,AlphaGo最重要的成就并不是采用了*能多么优秀的电脑,而是第一次让程序可以以人类的方式思考、学习和提高。所以过几天的比赛,无论谁输谁赢,我们见证的都是一个崭新纪元的开端。

当然别忘了关注新浪科技,我们到时候会在最前方,带你迎接这个新纪元的第一道曙光。

二、Alphago除了下围棋,还能有什么应用

Alphago是专门针对围棋的程序,只能用来下围棋。

以Alphago程序同样的逻辑编写的程序应用就比较多了,

谷歌的消息:

从今年开始,Google让 DeepMind AI“接管”了部分数据中心里的一些控制单元,从简单一些的风扇、空调和窗户,到复杂的服务器本身,最后节约了“几个百分点”的电力。经过复杂的计算模型折算后,DeepMind AI大约提高了 Google 15%的能源使用效率,“我们的系统为 Google节约了巨大的电费开支,对于环境也很有帮助。”

三、如何看待谷歌AlphaGo首次战胜人类围棋高手

一个月前,DeepMind创始人Demis Hassabis曾说道很快会有关于围棋研究的惊喜,而1月28日的《Nature》杂志即将以封面论文的形式介绍Google旗下人工智能公司DeepMind开发的一款名为AlphaGo的人工智能,它已经击败了欧洲围棋冠军,并将于3月与世界冠军李世乭对战。该程序采用了两个深度神经网络,policy work与value work,极大地降低了需要考虑的搜索空间的复杂度,前者降低搜索的广度,后者降低搜索的深度,很像人脑在下围棋时凭直觉快速锁定策略的思维。

这么说起给一点时间,巅峰的吴清源,李昌镐这类人物(即使不断学习)也是下不过电脑的了?(我指的电脑就是2015一台中等配置的PC这样,不是服务器集群,类似普通电脑跑Pocket Fritz 4)

今天(3-12-2016) AlphaGo已经3:0领先Lee Sedol了

这个并不是太出人意料。我记得十年前就有人说,十年内这个问题可以解决。可能那时候他就已经有点思路了吧。

这个问题能解决到这个程度,Google的确做出了很大的贡献,我想很多同样看上去很难的问题也并不是不能解决,而是我们愿不愿意解决,愿意花多大的精力在上面。我觉得这点启发非常重要,尤其是在深度网络这类新技术出现的时候,有很多地方简单地应用一下就能有新的突破。

老实说,我看了AlphaGo的思路,跟我之前的思路差不了太多,我在2015年1月份就看过一篇利用卷积神经网络来下棋的论文(神经网络可能终将在围棋上打败人类),并且有种豁然开朗的感觉,还想出了改进的思路(论文中的程序实际上有比较明显的缺陷,而去掉其中的缺陷就是一条更为完善的思路),真正的理论层面的突破是那篇论文,那篇论文写出来,就决定了今天只用了一年左右的时间AlphaGo能达到这个程度,Google的贡献在于将理论更好地改进和实践了,他们更有实力来解决这样的问题,不是像那篇论文里的程序,使用比较纯粹的神经网络,那样想要达到顶尖水准很有难度。

值得反省的是,为什么围棋作为东方人的游戏,却不是我们自己来解决这个问题?我觉得国内一定有人看到解决思路了,既然我这种业余爱好者都能看出点眉目。

四、什么是电销机器人

智能电销机器人是一个适合产品业务或服务推广需求的语音营销服务平台!通过准确的语音平台,群呼潜在客户群,集整合筛选潜在客户、瞄准目标客户和准确的客户分类三重营销于一体,全面实现营销!

智能电销机器人是做什么的?

企业精准营销

利用人工智能+大数据实现企业精确营销。比传统营销方法更加准确和灵活。

售后服务支持

支持企业售后服务,全方位场景应用+支持中断+人工转接+快速适应,帮助中小企业提高售后服务。

智能电话回访

智能电话回访客户,调查客户的满意度,准确记录客户的话语,并形成客户回访问卷数据库。

销机器人工作努力,不制造情绪,不需要鼓励,也不需要安抚销售和客服。这是一款智能电销机器人,每天24小时可以打3000个电话。

真实的语音录音,可以与客户进行多轮对话,初步筛选潜在客户;让每个员工创造自己的价值,让每个企业创造自己的品牌。希望点个赞谢谢!