大家好,关于高能计算服务器很多朋友都还不太明白,今天小编就来为大家分享关于基于WEB的网络计算的定义的知识,希望对各位有所帮助!
一、计算机的应用领域分为哪六个方面
1、信息管理
信息管理是以数据库管理系统为基础,辅助管理者提高决策水平,改善运营策略的计算机技术。信息处理具体包括数据的采集、存储、加工、分类、排序、检索和发布等一系列工作。信息处理已成为当代计算机的主要任务。
2、过程控制
过程控制是利用计算机实时采集数据、分析数据,按最优值迅速地对控制对象进行自动调节或自动控制。采用计算机进行过程控制,不仅可以大大提高控制的自动化水平,而且可以提高控制的时效*和准确*,从而改善劳动条件、提高产量及合格率。因此,计算机过程控制已在机械、冶金、石油、化工、电力等部门得到广泛的应用。
3、辅助技术
计算机辅助设计是利用计算机系统辅助设计人员进行工程或产品设计,以实现最佳设计效果的一种技术。CAD技术已应用于飞机设计、船舶设计、建筑设计、机械设计、大规模集成电路设计等。采用计算机辅助设计,可缩短设计时间,提高工作效率,节省人力、物力和财力,更重要的是提高了设计质量。
4、翻译
1947年,美国数学家、工程师沃伦·韦弗与英国物理学家、工程师安德鲁·布思提出了以计算机进行翻译(简称“机译”)的设想,机译从此步入历史舞台,并走过了一条曲折而漫长的发展道路。机译被列为21世纪世界十大科技难题。与此同时,机译技术也拥有巨大的应用需求。
5、多媒体应用
随着电子技术特别是通信和计算机技术的发展,人们已经有能力把文本、音频、视频、动画、图形和图像等各种媒体综合起来,构成一种全新的概念—“多媒体”(Multimedia)。在医疗、教育、商业、银行、保险、行政管理、军事、工业、广播、交流和出版等领域中,多媒体的应用发展很快。
6、计算机网络
计算机网络是由一些独立的和具备信息*能力的计算机互联构成,以实现资源共享的系统。计算机在网络方面的应用使人类之间的交流跨越了时间和空间障碍。计算机网络已成为人类建立信息社会的物质基础,它给我们的工作带来极大的方便和快捷,如在全国范围内的银行*的使用,火车和飞机票系统的使用等。
扩展资料:
计算机的特点:
1、运算速度快:计算机内部电路组成,可以高速准确地完成各种算术运算。当今计算机系统的运算速度已达到每秒万亿次,微机也可达每秒亿次以上,使大量复杂的科学计算问题得以解决。
2、计算精确度高:科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的*之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。
3、逻辑运算能力强:计算机不仅能进行精确计算,还具有逻辑运算功能,能对信息进行比较和判断。计算机能把参加运算的数据、程序以及中间结果和最后结果保存起来,并能根据判断的结果自动执行下一条指令以供用户随时调用。
4、存储容量大:计算机内部的存储器具有记忆特*,可以存储大量的信息,这些信息,不仅包括各类数据信息,还包括加工这些数据的程序。
5、自动化程度高:由于计算机具有存储记忆能力和逻辑判断能力,所以人们可以将预先编好的程序组纳入计算机内存,在程序控制下,计算机可以连续、自动地工作,不需要人的干预。
参考资料来源:百度百科-计算机
二、基于WEB的网络计算的定义
基于web,可以理解为使用协议进行的网络计算
网络计算参考:
网络计算的四种形式
------------------------------------------------------------------
肖侬卢锡城王怀民(转载自计算机世界)
20世纪90年代,Inter蔓延到世界各地,成为人们沟通信息和协同工作的有效工具,更为重要的是,Inter上汇集的成千上万的计算资源、数据资源、软件资源、各种数字化设备和控制系统共同构成了生产、传播和使用知识的重要载体。人们开始思考如何将物理上互连的众多资源汇聚起来,联合提供服务,重新认识网络计算技术的实质。
目前,网络计算正处于发展阶段,人们对它的定义还没有形成共识,但一个相对可以接受的理解是:“网络计算”是把网络连接起来的各种自治资源和系统组合起来,以实现资源共享、协同工作和联合计算,为各种用户提供基于网络的各类综合*。基于此,人们把企业计算、网格计算、对等计算和普及计算归类为网络计算。
企业计算:以中间件为核心
企业计算是“以实现大型组织内部和组织之间的信息共享和协同工作为主要需求而形成的网络计算技术”,其核心是Client/Server计算模型和相关的中间件技术。
早在20世纪80年代,人们就提出在互连的计算机硬件上部署新型的分布式操作系统,全面彻底地管理整个系统,给用户单一的系统视图。尽管这一努力产生了许多技术成果和实验系统,但一直没有形成可用的产品,人们直觉地感到在不断扩展的局部自治异构系统上实现资源的集中管理几乎是不可能的,于是开始采用中间件平台技术,以屏蔽系统的异构*,支持局部自治系统的信息交互和协同。经过十几年的发展,中间件取得了令人瞩目的发展,出现了远程数据库访问、远程过程调用、消息传递、交易管理等各类中间件。
20世纪90年代末,面向对象的中间件技术成为中间件平台的主流技术,出现了以Sun公司的EJB/J2EE、Microsoft的COM+/DNA和OMG的CORBA/OMA为代表的三个技术分支。其研究热点是建立标准化的对象请求代理,屏蔽网络环境下计算平台、操作系统、编程语言、网络协议的异构*和复杂*,使分布在网络上的应用系统能够协同工作,为网络应用提供通用的高级网络管理服务以及与应用领域相关的增值服务。
进入新世纪,随着电子商务需求的发展,企业计算面临企业间的信息共享和协同工作问题,面向Web的企业计算解决方案成为热点,为此W3C提出了Web Service技术体系,Microsoft推出了.Net技术,Sun推出SUN ONE架构,企业计算技术全面进入Inter时代。网格计算:让计算能力“公用化”
网格计算(Grid Computing)是网络计算的另一个具有重要创新思想和巨大发展潜力的分支。最初,网格计算研究的目标是希望将超级计算机连接成为一个可远程控制的元计算机系统(MetaComputers);现在,这一目标已经深化为建立大规模计算和数据处理的通用基础支撑结构,将网络上的各种高*能计算机、服务器、PC、信息系统、海量数据存储和处理系统、应用模拟系统、虚拟现实系统、仪器设备和信息获取设备(如传感器)集成在一起,为各种应用开发提供底层技术支撑,将Inter变为一个功能强大、无处不在的计算设施。
网格计算可以从三个方面来理解。
首先,从概念上,网格计算的目标是资源共享和分布协同工作。网格的这种概念可以清晰地指导行业和企业对各部门的资源进行基于行业或企业的统一规划、部署、整合和共享,而不仅仅是行业或大企业中的各个部门自己规划、占有和使用资源。这种思想的沟通和认同对行业和企业是至关重要的,将提升或改变整个行业或企业信息系统的规划部署、运行和管理机制。
其次,网格是一种技术。为了达到多种类型的分布资源共享和协作,网格计算技术必须解决多个层次的资源共享和合作技术,制定网格的标准,将Inter从通信和信息交互的平台提升到一个资源共享的平台。
最后,网格是基础设施,是各种网络来综合计算机、数据、设备、服务等资源的基础设施。随着网格技术逐步成熟,建立地理分布的遍布全国或全球的大型资源节点,集成网络上的多个资源,联合向全社会按需提供全方位的信息服务。这种设施的建立,将使用户如同今天我们按需使用电力一样,无需在用户端配全套计算机系统和复杂软件,就可以简便地得到网格提供的各种服务。
如同电力系统一样,把网格设施作为一个国家战略信息基础设施来规划、建设和运行管理,其复杂度和难度是相当大的,这里面有思想和观念上的变化,技术上的难点,以及国家法律和政策上的问题等,需要经过多年的艰苦努力。但是,大型企业、行业、国防等部门完全可以从现在就开始实施网格基础设施战略。
网格计算的重要战略意义及其广阔应用前景,使其成为当今吸引众多研究人员和巨大资金投入的研究热点,一些大型网格计算研究项目相继启动。截止到目前,最著名的网格计算研究项目包括以下一些:
●美国自然科学*于1997年底开始实施的“分布式网格”研究项目,其目标是在美国建立遍及全国的计算网格,支持重大科学与工程计算,为用户提供到桌面上的虚拟高*能计算环境。
●美国国家航空和宇宙航行局(NASA)的IPG(Information Power网格)项目。这是一个20年的研究计划,目的是让人们使用计算资源和信息资源就像使用电力网提供的电力资源一样方便快捷。
●美国能源部开发的ASCI网格已经投入生产*使用,其主要用途是核武器研究。
●美国国防部的全球信息网格(GIG)项目是最庞大的网格计划,用于美军新世纪作战支撑,预计2020年完成。
●欧洲共同体的Euro网格和Data网格。主要用于包括高能物理、生物计算、气候模拟等多个领域的应用。
● 2001年8月,美国NSF宣布了一个重大科研项目,研制名为“分布式万亿级设施”(Distributed Terascale Facility)的网格系统,简称Tera网格,它是世界上第一个从设计开始就面向网格的广域超级计算平台,也是第一个无处不在的计算机基础设施。
●我国科技部在“九五”开展了国家高*能计算环境(网格)建设和关键技术的研究。“十五”期间科技部加大了对网格技术研究和推广的力度,目标是突破网格关键技术,建立网格计算技术标准,将网格计算技术应用到行业和企业应用中,建立行业和企业应用网格,进一步加强全社会共享的国家高*能网格计算环境的建设,推动我国网格产业的形成和发展。
目前,大的网格项目研究和实施有一个*的特点,即各个项目是面向应用,与应用领域紧密相关。目前,IBM、HP、Sun、LSF、Boeing等公司都已经进入网格计算领域,加紧研究相关的技术和产品。
这里需要强调的是“网格计算”与“高*能计算机”的关系。高*能计算机是网格计算环境结构的节点和重要组成部分;网格计算技术是高*能计算技术的发展方向之一,它并不能替代超高*能计算机系统。但是未来的超高*能计算机系统必须支持网格计算环境,应能够很容易地融入到网格计算环境中,将其强大的计算和数据存储处理能力提供给众多的用户使用。网格计算技术的目的是结合高*能计算技术和网络计算技术,将高*能计算机的能力释放出去,构造一个公共的高*能处理和海量信息存储的计算基础设施,使各类用户和应用能够共享资源。因此,网格计算将会促进高*能计算机应用的发展,促进高*能计算机服务市场的发展,刺激市场对高*能计算机和海量存储系统的需求。
对等计算:倡导“平等”共享
对等计算(Peer-to-Peer,简称P2P)是在Inter上实施网络计算的新模式。在这种模式下,服务器与客户端的界限消失了,网络上的所有节点都可以“平等”共享其他节点的计算资源。
IBM为P2P下了如下定义:P2P系统由若干互联协作的计算机构成,且至少具有如下特征之一:系统依存于边缘化(非中央式服务器)设备的主动协作,每个成员从其他成员而不是从服务器的参与中受益;系统中成员同时扮演服务器与客户机的角色;系统应用的用户能够意识到彼此的存在,构成一个虚拟或实际的群体。
不难看出,P2P把网络计算模式从集中式引向分布式,也就是说,网络应用的核心从中央服务器向网络边缘的终端设备扩散:服务器到服务器、服务器到PC机、PC机到PC机,PC机到WAP手机,所有网络节点上的设备都可以建立P2P对话。
P2P给Inter的分布、共享精神带来了无限的遐想。有观点认为,至少能开发出几百种应用。但从目前的应用看,P2P的威力还主要体现在大范围的共享和搜索的优势上,诸如对等计算、协同工作、搜索引擎、文件*等。
普及计算:计算无所不在
普及计算(ubiquitous puting or pervasive puting)强调人与计算环境的紧密联系,使计算机和网络更有效地融入人们的生活,让人们在任何时间、任何地点都能方便快捷地获得网络计算提供的各种服务。
普及计算研究的内容主要包括两个方面:自然的人机交互和网络计算。美国排名前10位的大学无一例外地投巨资设立了以“普及计算”为主要方向的研究计划。目前有4个研究计划最具影响力,这些计划的目标是提出全新的体系结构、应用模式、编程模型等基础理论模型和方法。
● MIT的Oxygen研究计划
该计划的研究人员认为,未来世界将是一个到处充斥着嵌入式计算机的环境,它们已经融入了人们的日常生活中。Oxygen希望充分利用这些计算资源,达到“做得更少,完成更多(to do more by doing less)”的目的。
● CMU的Aura研究计划
它致力于研究在普及计算时代,在用户和计算环境之间增加一层软件层(称为Aura),由Aura代理用户去管理、维护分布式计算环境中频繁变化、松散耦合的多个计算设备,以完成用户的目标任务。Aura推崇的理念是:“‘人的精力’(User Attention)是最宝贵的资源,应该让它集中在用户要完成的任务上,而不是管理、配置硬件和软件资源上”。
● UC Berkeley的Ende*our计划
这是UC Berkeley进行的旨在通过运用信息技术,提供全新的、全球规模的信息基础设施,从根本上方便人们与信息、设备和他人进行交互的计划。这些信息设施应该能够动态实时地协调世界上任何可用的资源来满足用户计算的需要,其创新点之一是“流体软件”(Fluid Software),这种软件能够自适应地选择在何处执行、在何处存储,它通过协议获得可用资源并向其他实体提供服务。
●华盛顿大学的Portolano计划
该计划提出了“数据为中心的网络”以适应让计算本身变成不可见的(Invisible Computing)的要求。该计划认为目前计算机技术的发展仍然是技术驱动而非用户需求驱动。为了改变这一现状,该计划致力于研究根据用户的位置变化而自适应地改变软件用户界面的机制、以数据为中心的网络以及新型的分布式服务模型。
各类网络计算之间的异同
以上四类网络计算虽然侧重点不同,但最终的目标是一致的:广泛共享、有效聚合、充分释放。
所谓广泛共享,是指通过各种方法、技术和策略将网络上的各种资源提供给网络上众多用户共享、使用;所谓有效聚合,是指将网络上的巨大资源通过协同工作连接集成起来,产生巨大的综合效能,联合完成应用任务;所谓充分释放,是指为用户提供良好的开发手段和使用环境,将网络上多种资源的聚合效能按照需求传递给用户,为用户提供个*化的信息服务、计算服务和决策支持服务。
但是面对众多的网络计算技术和应用,人们有时很难区分它们之间的技术差异,不知道谁将成为未来网络计算的主导。事实上,虽然最终目标一致,但各种网络计算技术的应用范围和研究对象的规模、层次却各有不同。
面向对象的分布式计算技术强调的是分布系统的集成能力,以两层或多层Client/Server为主要计算模式,关心的是简化用户端的工作,强化多层服务器的功能,注重分布系统之间的协同工作和快速的应用开发和实现,强调应用服务之间的可交互、可操作*和代码的可移植*,通常关注一个组织内的资源共享。
P2P技术弱化了集中服务器的功能,重视网络中所有个体的作用,强调的是个体之间、系统之间、计算机之间的通信和联系,每一个参与者既是客户又是服务方,这使人们在Inter上的共享行为被提升到了一个更广泛的层次,使人们以更主动的方式参与到网络中去。它与现行以中间件为主的分布式计算技术所采用的Client/Server模式有本质区别。
网格计算在Inter基础上强调对计算、数据、设备等网络基本资源进行整合,力图将Inter作为一个社会化的计算基础设施。在计算模型、技术路径和研究目标上,网格计算和目前分布计算中间件领域面向应用级别的交互、互操作和开发有很大的不同。它强调多机构之间大规模的资源共享和合作使用,提供了资源共享的基本方法,而分布计算技术没有提供多组织之间的资源共享通用框架。显然,网格计算正在建立一种新的Inter基础支撑结构(如同TCP/IP、WWW协议和相应的软件系统奠定了现行Inter的基础),是21世纪Terascale设施的信息处理基础设施的先期实践。
普及计算模式则是要颠覆“人使用计算机”的传统方式,将人与计算机的关系改变为“计算机为人服务”,从某种意义上说,是让人与计算环境更好地融合在一起。
尽管各种网络计算技术有差异,但是它们之间并不是冲突的关系,而是一种正交关系,有时甚至是融合的,因此,各种网络计算技术可以共存。例如网格计算和CORBA、SOAP、XML等技术结合可以访问多个机构组成的虚拟组织的资源。
信息技术的多变*使我们不能肯定10年之后的网络计算将会发展到何等程度,但是多种网络计算形式共存、相互结合和融合是肯定的。无论如何,从当今基于Inter的各种网络计算实践和研究来看,实现网络资源的共享,提供大规模协同计算能力和对资源的有效访问,是网络计算未来发展的趋势,是下一代Inter的技术基础。
posted on Monday, April 19, 2004 12:19 AM
三、计算机网络发展史及关键技术
网络技术是从1990年代中期发展起来的新技术,它把互联网上分散的资源融为有机整体,实现资源的全面共享和有机协作,使人们能够透明地使用资源的整体能力并按需获取信息。资源包括高*能计算机、存储资源、数据资源、信息资源、知识资源、专家资源、大型数据库、网络、传感器等。
当前的互联网只限于信息共享,网络则被认为是互联网发展的第三阶段。网络可以构造地区*的网络、企事业内部网络、局域网网络,甚至家庭网络和个人网络。网络的根本特征并不一定是它的规模,而是资源共享,消除资源孤岛。
网络技术具有很大的应用潜力,能同时调动数百万台计算机完成某一个计算任务,能汇集数千科学家之力共同完成同一项科学试验,还可以让分布在各地的人们在虚拟环境中实现面对面交流。
网络技术的发展历程
网络研究起源于过去十年美国政府资助的高*能计算科研项目。这项研究的目标是将跨地域的多台高*能计算机、大型数据库、大型的科研设备、通信设备、可视化设备和各种传感器等整合成一个巨大的超级计算机系统,以支持科学计算和科学研究。
微软公司把开发力量集中在数据网络上,关注使用网络共享信息,而不是网络的计算能力,这反映了学术和研究领域内的分歧。事实上,很多用于学术领域的网络技术都能够成为商业应用。
Globus是美国阿贡(Argonne)国家实验室的网络技术研发项目,全美12所大学和研究机构参与了该项目。Globus对资源管理、安全、信息服务及数据管理等网络计算的关键理论进行研究,开发能在各种平台上运行的网络计算工具软件,帮助规划和组建大型的网络试验平台,开发适合大型网络系统运行的大型应用程序。目前,Globus技术已在美国航天局网络、欧洲数据网络、美国国家技术网络等8个项目中得到应用。2005年8月,美国国际商用机器公司(IBM)宣布投入数十亿美元研发网络计算,与Globus合作开发开放的网络计算标准,并宣称网络的价值不仅仅限于科学计算,商业应用也有很好的前景。网络计算和Globus从开始幕后走到前台,受到前所未有的关注。
中国非常重视发展网络技术,由863计划“高*能计算机及其核心软件”重大专项支持建设的中国国家网络项目在高*能计算机、网络软件、网络环境和应用等方面取得了创新*成果。具有18万亿次聚合计算能力、支持网络研究和网络应用的网络试验床——中国国家网络,已于2005年12月21日正式开通运行。这意味着通过网络技术,中国已能有效整合全国范围内大型计算机的计算资源,形成一个强大的计算平台,帮助科研单位和科技工作者等实现计算资源共享、数据共享和协同合作。
网络的关键技术
网络的关键技术有网络结点、宽带网络系统、资源管理和任务调度工具、应用层的可视化工具。网络结点是网络计算资源的提供者,包括高端服务器、集群系统、MPP系统大型存储设备、数据库等。宽带网络系统是在网络计算环境中,提供高*能通信的必要手段。资源管理和任务调度工具用来解决资源的描述、组织和管理等关键问题。任务调度工具根据当前系统的负载情况,对系统内的任务进行动态调度,提高系统的运行效率。网络计算主要是科学计算,它往往伴随着海量数据。如果把计算结果转换成直观的图形信息,就能帮助研究人员摆脱理解数据的困难。这需要开发能在网络计算中传输和读取,并提供友好用户界面的可视化工具。
网络技术的研究现状
网络计算通常着眼于大型应用项目,按照Globus技术,大型应用项目应由许多组织协同完成,它们形成一个“虚拟组织”,各组织拥有的计算资源在虚拟组织里共享,协同完成项目。对于共享而言,有价值的不是设备本身而是实体的接口或界面。
从技术角度看,共享是资源或实体间的互操作。Globus技术设定,网络环境下的互操作意味着需要开发一套通用协议,用于描述消息的格式和消息*的规则。在协议之上则需要开发一系列服务,这与建立在TCP/IP(传输控制协议/网际协议)上的万维网服务原理相同。在服务中先定义应用编程接口,基于这些接口再构建软件开发工具。
Globus网络计算协议建立在网际协议之上,以网际协议中的通信、路由、名字解析等功能为基础。Globus协议分为构造层、连接层、资源层、汇集层和应用层五层。每层都有各自的服务、应用编程接口和软件开发工具、上层协议调用下层协议的服务。网络内的全局应用都需通过协议提供的服务调用操作系统。
构造层功能是向上提供网络中可供共享的资源,是物理或逻辑实体。常用的共享资源包括处理能力、存储系统、目录、网络资源、分布式文件系统、分布式计算机池、计算机集群等。连接层是网络中网络事务处理通信与授权控制的核心协议。构造层提交的各资源间的数据*都在这一层控制下实现的。各资源间的授权验证、安全控制也在此实现。资源层的作用是对单个资源实施控制,与可用资源进行安全握手、对资源做初始化、监测资源运行状况、统计与付费有关的资源使用数据。汇集层的作用是将资源层提交的受控资源汇集在一起,供虚拟组织的应用程序共享、调用。为了对来自应用的共享进行管理和控制,汇集层提供目录服务、资源分配、日程安排、资源代理、资源监测诊断、网络启动、负荷控制、账户管理等多种功能。应用层是网络上用户的应用程序,它先通过各层的应用编程接口调用相应的服务,再通过服务调用网络上的资源来完成任务。应用程序的开发涉及大量库函数。为便于网络应用程序的开发,需要构建支持网络计算的库函数。
目前,Globus体系结构已为一些大型网络所采用。研究人员已经在天气预报、高能物理实验、航空器研究等领域开发了一些基于Globus网络计算的应用程序。虽然这些应用仍属试验*质,但它证明了网络计算可以完成不少超级计算机难以胜任的大型应用任务。可以预见,网络技术将很快掀起下一波互联网浪潮。面对即将到来的第三代互联网应用,很多发达国家都投入了大量研究资金,希望能抓住机遇,掌握未来的命运。
中国也加强了网络方面的投入。中科院计算所为自己的网络起名为“织女星网络”(Vega Grid),目标是具有大规模数据处理、高*能计算、资源共享和提高资源利用率的能力。与国内外其他网络研究项目相比,织女星网络的最大特点是“服务网络”。中国许多行业,如能源、交通、气象、水利、农林、教育、环保等对高*能计算网络即信息网络的需求非常巨大。预计在最近两三年内,就能看到更多的网络技术应用实例。
网络技术的应用领域
网络技术的应用领域很广,主要有以下几方面。
分布式超级计算分布式超级计算将分布在不同地点的超级计算机用高速网络连接起来,并用网络中间件软件“粘合”起来,形成比单台超级计算机强大得多的计算平台。
分布式仪器系统分布式仪器系统使用网络管理分布在各地的贵重仪器系统,提供远程访问仪器设备的手段,提高仪器的利用率,方便用户的使用。
数据密集型计算并行计算技术往往是由一些计算密集型应用推动的,特别是一些带有巨大挑战*质的应用,大大促进了对高*能并行体系结构、编程环境、大规模可视化等领域的研究。数据密集型计算的应用比计算密集型的应用多得多,它对应的数据网络更侧重于数据的存储、传输和处理,计算网络则更侧重于计算能力的提高。在这个领域独占鳌头的项目是欧洲核子中心开展的数据网络(DataGrid)项目,其目标是处理2005年建成的大型强子对撞机源源不断产生的PB/s量级实验数据。
远程沉浸这是一种特殊的网络化虚拟现实环境。它是对现实或历史的逼真反映,对高*能计算结果或数据库可视化。“沉浸”是指人可以完全融入其中:各地的参与者通过网络聚集在同一个虚拟空间里,既可以随意漫游,又可以相互沟通,还可以与虚拟环境交互,使之发生改变。目前,已经开发出几十个远程沉浸应用,包括虚拟历史*、协同学习环境等。远程沉浸可以广泛应用于交互式科学可视化、教育、训练、艺术、娱乐、工业设计、信息可视化等许多领域。
信息集成网络最初是以集成异构计算平台的身份出现,接着进入分布式海量数据处理领域。信息网络通过统一的信息*架构和大量的中间件,向用户提供“信息随手可得”式的服务。网络信息集成将更多应用在商业上,分布在世界各地的应用程序和各种信息通过网络能进行无缝融合和沟通,从而形成崭新的商业机会。
信息集成如信息网络、服务网络、知识网络等,是近几年网络流行起来的应用方向。2002年,Globus联盟和IBM在全球网络论坛上发布了开放*网络服务架构及其详细规范,把Globus标准与支持商用的万维网服务标准结合起来。2004年,Globus联盟、IBM和惠普(HP)等又联合发布了新的网络标准草案,把开放*网络服务架构详细规范I转换成6个用于扩展万维网服务的规范,网络服务已与万维网服务彻底融为一体,标志着网络商用化时代的来临。
网络技术的发展,标准是关键。就像TCP/IP协议是因特网的核心一样,构建网络计算也需要对核心——标准协议和服务进行定义。目前,一些标准化团体正在积极行动。迄今为止,网络计算虽还没有正式的标准,但在核心技术上,相关机构与企业已达成一致,由美国阿贡国家实验室与南加州大学信息科学学院合作开发的Globus计算工具软件已成为网络计算实际的标准,已有12家著名计算机和软件厂商宣布将采用Globus计算工具软件。作为一种开放架构和开放标准基础设施,Globus计算工具软件提供了构建网络应用所需的很多基本服务,如安全、资源发现、资源管理、数据访问等。目前所有重大的网络项目都是基于Globus计算工具软件提供的协议与服务的。
除了标准以外,安全和可管理*、人才的缺乏也是网络计算亟待解决的一个问题,否则它将无法成为企业的商业架构。在真正实现商业应用之前,还需要解决许多问题。即便如此,构建全球网络的前景仍是无法抗拒的。